Front | \[\int e^{-ax^2}\ dx \] |
---|---|
Back | \[ \frac{\sqrt{\pi}}{2\sqrt{a}}\text{erf}\left(x\sqrt{a}\right),\\\text{ where erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt\] |
Tags: exponentials
Learn with these flashcards. Click next, previous, or up to navigate to more flashcards for this subject.
Next card: Int x e^{-ax^2 dx dfrac{1}{2a}e^{-ax^2
Previous card: Int e^{ax^2 dx frac{i\sqrt{\pi}}{2\sqrt{a}}\text{erf}\left(ix\sqrt{a}\right text erf}(x)=\frac{2}{\sqrt{\pi}}\int 0^x e^{-t^2}dt
Up to card list: 134 Integrals from Integral-Table.com